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Abstract

Accurate description of particle–fluid interaction is one of the big challenges in the community of multiphase flows. Toward this direc-
tion, the combined multi-direct forcing and immersed boundary method were presented to simulate flows laden with finite-size moving
particles with full-scale solutions. In the approach, the hydrodynamic interactions between moving rigid boundary and fluid were cal-
culated using the multi-direct forcing scheme. The no-slip boundary conditions at the immersed boundaries can be satisfied well in this
way. Direct numerical simulations of particle sedimentation under various conditions were performed based on the multi-direct forcing
scheme, the immersed boundary method and the high-order finite difference. It is proved that this approach can successfully simulate the
interactions between fluid and particle, the interactions between particle and particle as well as the interactions between particles and
wall. The hitting and rebounding process of the single particle sedimentation, the drafting–kissing–tumbling of two settling particles
and many particles sedimentation were observed. The quantitative comparisons against other studies were also conducted to validate
the present approach.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Matter commonly occurs in one of three phases, namely
solid, liquid and gas. Any flow involving two or three
phases is a multiphase flow. Multiphase flows exist widely
both in nature and in industry, including atmospheric cur-
rents, dust storms, spray combustion, aerosol deposition,
pollutants transport and so on. Almost 90% flows are mul-
tiphase flows. In multiphase flows, the inter-phase interac-
tions are one of the key problems, which greatly influence
the heat and mass transfer in the flows. Thus, the inter-
phase interactions in multiphase flows have attracted lots
of researcher’s attention in the past decades (Tsuji and
Morikawa, 1982; Tsuji et al., 1984; Gore and Crowe,
1989; Hetsroni, 1989; Pan et al., 2002).
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Compared to experimental measurements, the numerical
simulations have remarkable advantages in exploring the
inter-phase interactions in multiphase flows because the
boundary conditions and impact parameters can be sepa-
rately studied. But the results of the numerical simulations
should be credible. Therefore, developing of numerical
methods with higher accuracy is of great significance to
effectively simulate multiphase flows. Currently, the high-
est-resolution numerical method for turbulence simulation
is direct numerical simulation (DNS). Although it is limited
to study the flows with low Reynolds numbers, great
achievements have been obtained (Moin and Mahesh,
1998). While for multiphase flows, there are two kinds of
DNS approaches with different levels at present. In the first
level approach, the particle is considered as real finite vol-
ume and the hydrodynamic force acted on the particle is
accurately calculated by integrating the viscosity and
pressure forces imposed by fluid. In this approach, both
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the fluid and the particle are simulated using DNS. The
particle size can be larger than the grid size and there is
no any empirical model is introduced. The flow around
the particle, such as the wake can also be captured. From
this point of view, this level method is the fully resolved
or truly direct numerical simulation of multiphase flows.
In the second level approach, the fluid is simulated using
DNS, but the particle is assumed to be a mass point with-
out volume and the main force acted on it is modeled by
the Stokes drag force. This method is available when the
particle scale is smaller than the grid scale and the flow is
dilute. It belongs to the traditional DNS of multiphase
flows and has been extensively applied in the past decades
(Squires and Eaton, 1990; Pedinotti et al., 1992; Ling et al.,
1998; Soltani et al., 1998; Barré et al., 2001; Marchioli
et al., 2003; Ferrante and Elghobashi, 2003; Fan et al.,
2004; Biswas et al., 2005; Luo et al., 2006).

Simulations of the interaction between particle and fluid
with high accuracy are difficult. The major challenge is how
to deal with the boundary between particle and fluid. Due
to its unique advantages, the fully resolved DNS method
has become popular and popular, and many numerical
schemes have been developed in the past 15 years. Hu
and co-workers (1996, 2001) proposed the boundary fitted
techniques to simulate fluid particle motions. The finite ele-
ment methods based on unstructured grids were used.
Some microcosmic phenomena and mechanisms were suc-
cessfully observed. However, the adapting mesh to the
varying positions of the particles during the simulation
leads to tremendous computational cost. In order to avoid
the time-consuming re-meshing, a series of methods based
on a fixed Cartesian grid were put forward to simulate
flows with complex boundary. Glowinski et al. (1999,
2001) presented a distributed Lagrange multiplier/fictitious
domain method for particulate flows, which consists to fill
the moving bodies by the surrounding fluid and impose a
rigid body motion to the fluid filling the regions previously
occupied by the rigid bodies and then the rigid body
motion constraint can be relaxed by using distributed
Lagrange multipliers. The advantages of this method are
that one does not need to generate new mesh and to calcu-
late the hydrodynamic forces at each time step. Patankar
et al. (2000) improved this method by presenting a new
DLM formulation to impose the rigid motion by constrain-
ing the deformation-rate tensor within the particle domain
to be zero. Recently, they have also introduced the fast
computation technique for direct numerical simulation of
particulate flows (Sharma and Patankar, 2005). The above
ALE and DLM formulations have been implemented for
various laminar and small density-ratio solid–liquid flow
conditions (Pan et al., 2001, 2002; Patankar and Joseph,
2001; Patankar et al., 2002; Singh et al., 2003; Cho et al.,
2005). Ladd and Verberg (2001) developed the Lattice
Boltzmann method (LBM) to simulate particulate suspen-
sions. Maxey and Patel (2001) proposed the force-coupling
method (FCM) for particulate flows. This method is based
on representing the particles by low-order force multipoles
distributed over a finite volume. They found that the DNS
results are in good agreement with their experimental data
when the particle Reynolds number is small (Lomholt
et al., 2002). Burton and Eaton (2005) performed fully
resolved simulations of the particle–turbulence interaction
by using the overset grid method. They found that the real
force imposed on particle is largely different from that com-
puted based on the standard Stokes drag expression.
Prosperetti and Oguz (2001) presented a new approach,
Physalis, to the direct numerical simulation of potential
problems with many spherical internal boundaries. The
basic idea is to use a local analytic representation valid near
the particle to transfer the no-slip condition from the par-
ticle surface to the adjacent grid nodes. Thus the irregular
relation between the particle boundary and the underlying
mesh is avoided and fast solvers can be used. This method
was also successfully extended to simulate two-dimensional
Navier–Stokes flow around cylinders and moving particles
(Takagi et al., 2003; Zhang and Prosperetti, 2003). At the
same time, the volume-of-fluid method (Scardovelli and
Zaleski, 1999), the level set method (Sussman et al.,
1994), the constrained interpolation profile method (Yabe
et al., 2001) and the front tracking method (Tryggvason
et al., 2001) have also been presented to simulate the
liquid–liquid or gas–liquid two-phase flows.

In particular, the immersed boundary method (IBM),
originally developed by Peskin (1972) has attracted con-
siderable interest in the last few years (Mittal and Iaccari-
no, 2005). In Peskin’s case, the singular force on the
Lagrangian coordinates of the boundary was exerted on
the flow flied which is on the Eulerian coordinates via a
regularized Dirac delta function. To calculate the interac-
tions between solid boundary and fluid, Goldstein et al.
(1993) proposed a feedback scheme to iteratively deter-
mine the magnitude of the force required to obtain a
desired velocity on the immersed boundary. The feedback
forcing is in the form:

f ðxs; tÞ ¼ a �
Z t

0

½uðxs; t0Þ � Vðxs; t0Þ�dt0

þ b � ½uðxs; tÞ � Vðxs; tÞ� ð1Þ

where a and b are negative constants, u(xs, t) is the fluid
velocity at surface point xs, and V(xs, t) is the velocity of
the body boundary itself.

The above formulation is a feedback to the velocity dif-
ference u(xs, t) � V(xs, t) and it will enforce u(xs, t) =
V(xs, t) on the immersed boundary. Saiki and Biringen
(1996) implemented this feedback scheme to compute the
flow past a circular cylinder with virtual boundary method
(VBM) successfully. In their work, the boundary of the cir-
cular cylinder is composed of more than one thousand
Lagrangian points and through extrapolation scheme the
feedback forcing which exerts on the Lagrangian point
can affect the fluid that around the circular cylinder. In
order to let the velocity at the boundary of the circular cyl-
inder satisfy the no-slip boundary, a proper choose of the
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tow negative constants a and b which can lead to different
feedback forcing should be done. Under the effect of the
feedback forcing, the velocity on each Lagrangian point
trends to zero after a period of time that means the feed-
back forcing can not let the velocity at the immersed
boundary satisfy the no-slip boundary condition
immediately.

On the other hand, Fadlun et al. (2000) proposed an
approach to calculate the interaction force between
immersed boundary and fluid which is called direct forcing
based on immersed boundary method. The velocity at the
points which are close to the immersed boundary is simply
set at every time step. It seems like applying an equivalent
forcing term to the Navier–Stokes equations. Compared
with the feedback forcing, the direct forcing is more general
because there is not any unknown constant that should be
determined in the formulation of solving direct forcing.
However, under the effect of direct forcing, the velocity
at the points on the immersed boundary may not effectively
satisfy the no-slip boundary condition due to the mutual
influence of the direct forcing at the neighboring points.

In order to overcome the problem, a new multi-direct
forcing technique with the immersed boundary method is
proposed in present paper for the simulation of flows laden
with moving particles. This scheme can let the velocity at
the immersed boundary trend to satisfy the no-slip bound-
ary immediately and accurately. We will present the
method to combine the IBM’s ability to smoothly transfer
quantities between Lagrangian and Eulerian points with
the advantages of multi-direct formulation of the fluid–
solid interactions.

2. Mathematic description

2.1. Governing equations for fluid flow

The dimensionless governing equations for incompress-
ible flows in the entire computational domain X are:

r � u ¼ 0 ð2Þ
ou

ot
þ u � ru ¼ �rP þ 1

Re
r2uþ f ð3Þ

where u is the velocity of fluid, P is the pressure and Re is
the Reynolds number defined as Re ¼ q�U �L

l . Here q is the
density of fluid, U is the characteristic velocity of flow field,
L is the characteristic length of flow field and l is the vis-
cosity of fluid. f in Eq. (3) is the external force exerted on
the flow field which is the mutual interaction force between
fluid and immersed boundary expressed as following:

f ðxÞ ¼
Z

X
FkðxkÞ � dðx� xkÞdxk ð4Þ

where d(x � xk) is the Dirac delta function, xk is the posi-
tion of the Lagrangian points set at the immersed bound-
ary, x is position of the computational Eulerian mesh
and Fk(xk) is the force exerted on the Lagrangian point xk.
2.2. Schemes of multi-direct forcing

In order to let the velocity on the Lagrangian points at
the immersed boundary satisfy the no-slip boundary condi-
tion, a forcing Fk(xk) is imposed on the Lagrangian point
to modify its velocity equal the desired velocity uL at the
immersed boundary. The forcing Fk(xk) is determined as
follows:

From the above Eq. (3), one can get

f ¼ ou

ot
þ u � ruþrP � 1

Re
r2u ¼ ou

ot
� rhs

¼ unþ1 � un

Dt
� rhs ð5Þ

where n and n + 1 represent two different times and

rhs ¼ � u � ruþrP � 1

Re
r2u

� �
: ð6Þ

For the Lagrangian point xk at the immersed boundary,
one can get

FkðxkÞ ¼
unþ1

k � un
k

Dt
� rhsk ¼

unþ1
k � ûk

Dt
þ ûk � un

k

Dt
� rhsk ð7Þ

where ûk is a temporary parameter which satisfies the
momentum equation that is

ûk � un
k

Dt
� rhsk ¼ 0 ð8Þ

and

rhsk ¼ � u � ruþrP � 1

Re
r2u

� �
k

ð9Þ

Therefore, the forcing exerted on the Lagrangian points at
the immersed boundary is

FkðxkÞ ¼
unþ1

k � ûk

Dt
¼ uL � ûk

Dt
ð10Þ

Under the effect of the forcing, the velocity on the Lagrang-
ian point xk at n + 1 time unþ1

k can be modified to the de-
sired velocity uL. The forcing is direct in the sense that
the desired value of velocity is imposed directly on the
boundary without any dynamical process (Fadlun et al.,
2000) and the forcing is based upon the law of conservation
(Silva et al., 2003).

The Dirac delta function is applied to spread the two-
way coupling between Eulerian girds and Lagrangian
points. The temporary velocity on the Lagrangian point
at the immersed boundary xk is obtained from its sur-
rounding Eulerian grids x.

ûk ¼
X
x2X

û � dhðxk � xÞ � h2 ð11Þ

where û is also the temporary parameter on the Eulerian
grids which satisfies the momentum equation that is:

û� un

Dt
� rhs ¼ 0 ð12Þ
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The effect of the forcing on the Lagrangian points which
spreads into the Eulerian grids is expressed as:

f ðxÞ ¼
Z

X
FkðxkÞ � dðx� xkÞdxk

¼
XN

k¼1

FkðxkÞ � dhðx� xkÞ � DV k ð13Þ

where N is the number of Lagrangian points, and DVk is
the discrete volume for each Lagrangian point.

The discrete delta function is chosen as that of Griffith
and Peskin (2005)

dhðx� xkÞ ¼
1

h2
dh

x� xk

h

� �
� dh

y � yk

h

� �
ð14Þ

where x = (x,y), xk = (xk, yk), h is the Eulerian mesh size,
and

dhðrÞ ¼

1
8
ð3� 2jrj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jrj � 4r2

p
Þ 0 6 jrj < 1

1
8
ð5� 2jrj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12jrj � 4r2

p
Þ 1 6 jrj < 2

0 2 6 jrj

8><
>:

ð15Þ

To solve the governing equations, the spatial derivatives
are discretized using the fourth-order compact finite differ-
ence scheme (Lele, 1992) based on non-staggered grid. The
pressure-Poisson equation derived by applying the diver-
gence operator to the momentum equations replaces the
continuity equation that is satisfied indirectly through the
solution of the pressure equation. To reduce the cost of
core memory in simulations, a four-step-four-order Run-
ge–Kutta marching scheme (Jameson and Schmidt, 1985)
is applied to the time integration. The computational algo-
rithm is described as follows:

ulþ1 ¼ un þ rhsl � Dt
4� l

l ¼ 0; 1; 2; 3 ð16Þ

ûk ¼
X
x2X

u4 � dðxk � xÞ � h2 ð17Þ

FkðxkÞ ¼
uL � ûk

Dt
ð18Þ

f ðxÞ ¼
XN

k¼1

FkðxkÞ � dðx� xkÞ � DV k ð19Þ

unþ1 ¼ u4 þ f ðxÞ � Dt ð20Þ

r2P ¼ �r � ðu � ruÞ � oD
ot
þr � f ð21Þ

where DV k ¼ 2�p�r
N � h is proposed by Uhlmann (2005) and

D = $ Æ u.
The above direct forcing exerted on the Lagrangian

point xk can modify the computational velocity ûk to the
desired velocity uL. However, when spreading the effect
of forcing from the Lagrangian points to the Eulerian
grids, different schemes of discrete delta function can lead
to different results. And the velocities on the Lagrangian
points may not satisfy the no-slip boundary condition very
well during the process of interpolation to obtain the sim-
ulated velocity on the Lagrangian points and extrapolation
to spread the forcing effect to its surrounding Eulerian
grids. Therefore, the multi-direct forcing technique
described as below is applied here.

By solving Eqs. (16)–(20), the velocity of the whole flow
field unþ1

1 is obtained where n + 1 is the time level and the
under subscript 1 represents exerting the direct forcing
for the first time. Then the velocity on the Lagrangian
point is

û1
k ¼

X
x2X

unþ1
1 � dðxk � xÞ � h2 ð22Þ

The best result is û1
k ¼ uL, but always û1

k 6¼ uL. Though
the velocity at the immersed boundary can get close to
the desired velocity after a long period of time, the no-slip
boundary condition is still not satisfied very well. For the
sake of getting the velocity on the Lagrangian point much
close to the desired velocity, the direct forcing is exerted for
the second time which makes

F2
kðxkÞ ¼

uL � û1
k

Dt
ð23Þ

Then the forcing is spread from the Lagrangian points
to the Eulerian grids through the Dirac delta function

f 2ðxÞ ¼
XN

k¼1

F2
kðxkÞ � dðx� xkÞ � DV k ð24Þ

After exerting the direct forcing for the second time, the
velocity of the whole flow field becomes

unþ1
2 ¼ unþ1

1 þ f 2ðxÞ � Dt ð25Þ
Thus the velocity on the Lagrangian point at the immersed
boundary becomes

û2
k ¼

X
x2X

unþ1
2 � dðxk � xÞ � h2 ð26Þ

The value of û2
k is expected to be closer to the desired

velocity uL than that of û1
k . After NF times of this proce-

dure during one time step, the velocity at the immersed
boundary can get much close to the desired velocity. The
total forcing exerting on each Lagrangian point Fk(xk) is
the sum of the forcing exerting on each Lagrangian point
for the whole NF times, that is:

F kðxkÞ ¼
XNF

i¼1

F i
kðxkÞ ð27Þ

In the present study, the multi-direct forcing technique is
applied to simulate flows with moving particles. The main
advantage of the multi-direct forcing technique is that
under the effect of multi-direct forcing, the no-slip bound-
ary condition on the Lagrangian points at the immersed
boundary can be well satisfied immediately and accurately
when using the immersed boundary method proposed by
Peskin (1972) for the simulation of particulate flows.
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2.3. Governing equations for particle motion

Based on the above direct-forcing scheme and immersed
boundary method, the force and the torque exerted on a
moving particle immersed in the incompressible flows can
be expressed as

F ¼ �
Z N

1

FkðxkÞds ¼ �
Z

X
f ðxÞdx ¼ �

X
x2X

f ðxÞh2 ð28Þ

T ¼ �
Z N

1

ðxk � xcÞ � FkðxkÞds ¼ �
Z

X
ðx� xcÞ � f ðxÞdx

¼ �
X
x2X
ðx� xcÞ � f ðxÞh2 ð29Þ

where xc is the center of the particle.
Then the motion of the particle is governed by the fol-

lowing equations:

M
dU

dt
¼ Mg þ F þ F 0 ð30Þ

dX

dt
¼ U ð31Þ

I
dx
dt
¼ T ð32Þ

dh

dt
¼ x ð33Þ

where M is the mass of particle, U is the velocity of particle,
g is the gravitational acceleration, X is the center of parti-
cle, I is the moment of inertia, x is the angular velocity, h is
the angular orientation of the particle and F 0 is the collision
force acting on the particle by other particles and the wall
when they come close to each other.

The desired velocity on the Lagrangian point at the
immersed boundary is

uL ¼ U þ x� ðxk � xcÞ ð34Þ

The discretization forms of the governing equations are
summarized as follows:

Unþ1 ¼ Un þ ðF
n þ F 0nÞ

M
Dt þ g � Dt ð35Þ

Xnþ1 ¼ Xn þUn þUnþ1

2
Dt ð36Þ

xnþ1 ¼ xn þ Tn

M
Dt ð37Þ

hnþ1 ¼ hn þ xn þ xnþ1

2
Dt ð38Þ

When spreading the effect of the forcing from the
Lagrangian points to the Eulerian nodes with multi-direct
forcing scheme, the force acted on the Lagrangian point
which contains the desired velocity uL and the simulated
velocity ûi

kði represents the ith time of exerting the direct
forcing) should be calculated by using Eqs. (19) and (24).
However, the desired velocity at n + 1 time level unþ1

L is
unknown. A simple way to deal with it is applying a
one-order explicit scheme with un

L instead of unþ1
L .

This way has been used in previous numerical simulations
(Kajishima and Takiguchi, 2002; Wan and Turek, 2007).
For the sake of convenience, we also use this explicit
scheme in the present study. Then the force exerted on
the Lagrangian point at the immersed boundary should
be changed as

FkðxkÞ ¼
unþ1

L � ûk

Dt
� un

L � ûk

Dt
ð39Þ

where un
L ¼ Un þ xn � ðxn

k � xn
cÞ.

2.4. Particle–particle collision

A collision model is applied in present numerical simu-
lation to prevent the particles from interpenetration each
other. Glowinski et al. (1999) proposed a short-range
repulsive force model to keep the distance between partic-
ulate surfaces more than one element. Singh et al. (2003)
suggested a modified repulsive force model which allows
a little overlap of each particle. Wan and Turek (2007)
combined the two models to simulate the collision between
particles. In the present simulations, the combined repul-
sive model is also used to deal with the particle–particle
collision.

For particle–particle collisions, the repulsive force is
determined as:

FP
i;j¼

1
e0
P
ðX i�X jÞðRiþRj�di;jÞ di;j <RiþRj

1
eP
ðX i�X jÞðRiþRjþn�di;jÞ2 RiþRj6 di;j <RiþRjþn

0 RiþRjþn6 di;j

8>><
>>:

ð40Þ

where Ri and Rj are the radius of the ith and the jth parti-
cle, Xi and Xj are the centers of the ith and the jth particle,
di,j = jXi � Xjj is the distance between their center, n is the
range of the repulsive force, eP and e0P are small positive
stiffness parameters for particle–particle collisions.

For particle–wall collisions, the repulsive force is:

FW
i ¼

1
e0

P
ðX i � X 0iÞð2Ri � d 0iÞ di;j < 2Ri

1
eP
ðX i � X 0iÞð2Ri þ n� d 0iÞ

2 2Ri 6 di;j < 2Ri þ n

0 2Ri þ n 6 di;j

8>><
>>:

ð41Þ

where X 0i is the coordinate vector of the center of the near-
est imaginary particle located on the boundary.

Then the total collision force exerting on the ith particle
by other particles and the walls is:

F 0i ¼
XN

j¼1;j 6¼i

FP
i;j þ FW

i ð42Þ
3. Numerical implementations and discussions

In the present work, we apply the multi-direct forcing
technique to simulate two-dimensional flows with moving
particles. The sedimentations of single particle, two
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Fig. 1. The average value of lP2-norm for different times of multi-directing
forcing (NF = 1, 4, 10 and 20) for qP = 1.25 g/cm3, l = 0.1 g/(cm s),
h ¼ 1

256
cm and Dt = 3.125 · 10�6 s.

Fig. 2. Time history of lP2-norm for qP = 1.25 g/cm3, l = 0.1 g/(cm s),
h ¼ 1

256
cm and Dt = 3.125 · 10�6 s.
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particles and up to 105 particles under different conditions
are investigated.

3.1. Single particle sedimentation

In this simulation, for convenience of comparison, the
computational parameters are chosen as the same as those
of Glowinski et al. (2001) and summarized as follows:

The computational domain is X = (0.2 cm) · (0.6 cm).
The diameter of the particle is DP = 0.25 cm.
The density of the particle is qP = 1.25 g/cm3 and 1.5 g/
cm3.
The center of the particle is located at (1 cm, 4 cm) at
time t = 0 s.
The fluid and the particle are initially at rest.
The fluid density is qf = 1.00 g/cm3.
The fluid viscous is l = 0.1 g/(cm s) and 0.01 g/(cm s).
The collision parameter is eW = 0.5 · 10�6.

The mesh sizes are set as 1
18

, 1
36

and 1
64

of the particulate
diameter and the corresponding mesh sizes are
h ¼ 1

72
cm; h ¼ 1

144
cm and h ¼ 1

256
cm, respectively. And

for the three kinds of mesh sizes 57, 114 and 202 Lagrang-
ian points are used at the immersed boundary, respectively.

The maximum Reynolds number is defined as

ReMax ¼Max½ReðtÞ�

¼Max
qP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UPðtÞ2 þ V PðtÞ2

q
� DP

l

2
4

3
5 ð43Þ

To examine the effect of multi-direct forcing for partic-
ulate flows, the lP2-norm error of the velocities on the
Lagrangian points at the immersed boundary with respect
to no-slip boundary condition is defined as follows as a
parameter and tracked at every time step.

lP2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k¼1
½ðuk�uLÞ2þðvk�vLÞ2�

N

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U PðtÞ2 þ V PðtÞ2 þ ð0:5 � xðtÞ � DpÞ2

q
when ðU PðtÞ; V PðtÞ;xðtÞÞ 6¼ ð0; 0; 0Þ ð44Þ

where U(t) = (UP(t), VP(t)) is the velocity of mass center of
the particle, x(t) is the angular velocity for the present two-
dimensional flow and DP is the diameter of particle. This
lP2-norm shows the relative error of the velocity at the im-
mersed boundary with respect to the no-slip boundary con-
dition. In the present simulations of particle sedimentation,
the velocity of particle almost is not equal to zero. Then the
lP2-norm is not tracked when (UP(t), VP(t),x(t)) = (0,0,0).

The times of performing the multi-direct forcing on each
Lagrangian point at the immersed boundary NF is 1, 4, 10
and 20 to check the effect of this multi-direct forcing
scheme for single particle sedimentation under the condi-
tions of qP = 1.25 g/cm3, l = 0.1 g/(cm s), mesh size h ¼
1

256
cm and time step Dt = 3.125 · 10�6 s. The average value
of lP2-norm for different times of multi-directing forcing NF

is shown in Fig. 1. When NF is 1 which means that the ori-
ginal direct forcing scheme proposed by Fadlun et al.
(2000) is applied, the average value of lP2-norm is
1.4 · 10�4. When increasing the times of performing the
multi-direct forcing NF, the average value of lP2-norm
decreases in a ‘‘�2’’ slope manner in the log–log plot.
And when NF is 20, the average value of lP2-norm reduces
to 1.52 · 10�6 which means a better no-slip boundary con-
dition is reached. This indicates that the multi-direct forc-
ing scheme can improve the no-slip boundary condition
at the immersed boundary in comparison with the original
direct forcing scheme proposed by Fadlun et al. (2000).

The time history of lP2-norm for single particle sedimen-
tation under the conditions of qP = 1.25 g/cm3, l = 0.1 g/
(cm s), NF = 20 mesh size h ¼ 1

256
cm and time step Dt =

3.125 · 10�6 s corresponding to the maximum CFL num-



Table 2
Comparisons of the maximum Reynolds number for different temporal
increments ðqP ¼ 1:25 g=cm3; l ¼ 0:1 g=ðcm sÞ; h ¼ 1

256
cmÞ

qP ¼ 1:25 g=cm3; l ¼ 0:1 g=ðcm sÞ; h ¼ 1
256 cm

Dt (s) 5.0 · l0�5 6.25 · 10�6 3.125 · l0�6

ReMax 17.323 17.316 17.307
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ber 0.0044 is shown in Fig. 2. It can be seen that the lP2-
norm reduces to 1.52 · 10�6 in a very short time and main-
tains this lower level during the whole simulation. This
means that the multi-direct forcing scheme can modify
the simulated velocity at the immersed boundary to closely
approach the desired velocity and the no-slip boundary
condition at the Lagrangian points is satisfied well at every
time step during the particle settling in the flow field.

The average value of lP2-norm defined in Eq. (44) for
three different mesh sizes conditions corresponding to
h ¼ 1

72
cm, 1

144
cm and 1

256
cm (qP = 1.25 g/cm3, l = 0.1 g/

(cm s), Dt = 3.125 · 10�6 s, NF = 20) is shown in Fig. 3.
The average value of lP2-norm for h ¼ 1

72
cm is 5.87 ·

10�6 which is a very small number and this indicates that
the no-slip boundary at the immersed boundary of the par-
ticle is reached very well with the multi-direct forcing tech-
nique. And the average value of lP2-norm for h ¼ 1

144
cm is

3.9 · 10�6. When changing the resolution of grid, the aver-
age value of lP2-norm varies in a ‘‘2’’ slope in the log–log
plot.

Table 1 shows the comparison of the maximum Rey-
nolds number during the particle settling in the flow with
previous related numerical results. The present predicted
maximum Reynolds numbers under different mesh sizes
are in good agreement with those of Glowinski et al.
(2001) and Wan and Turek (2007). The maximum Rey-
nolds numbers of different temporal increments for
Fig. 3. The average value of lP2-norm for three different mesh sizes
conditions corresponding to h ¼ 1

72
cm, 1

144
cm and 1

256
cm (qP = 1.25 g/

cm3, l = 0.1 g/(cm s), Dt = 3.125 · 10�6 s).

Table 1
Comparisons of the maximum Reynolds number during the particle
sedimentation for qP = 1.25 g/cm3 and l = 0.1 g(cm s)

qp = 1.25 g/cm3, l = 0.1 g/(cm s)

Present Glowinski et al.
(2001)

Wan and Turek
(2007)

h(cm) 1
72

1
144

1
256

1
192

1
256

1
48

1
96

ReMax 16.962 17.216 17.307 17.27 17.31 17.42 17.15
h ¼ 1
256

cm are shown in Table 2. The value of maximum
Reynolds numbers are 17.323, 17.316 and 17.307 for
Dt = 5 · 10�5 s, Dt = 6.25 · 10�6 s, and Dt = 3.125 ·
10�6 s, respectively. And the average value of lP2-norm at
different temporal resolutions is shown in Fig. 4. The aver-
age value of lP2-norm varies in a ‘‘1’’ slope in the log–log
plot as changing the temporal resolution. Because of the
Fig. 4. Variation of average value of lP2-norm at different temporal
resolutions.
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256
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first order accuracy of solving the force exerted on a parti-
cle in Eq. (39), the temporal resolution of the simulation of
particulate flow has first order accuracy. The velocity vec-
tor and vorticity contour as well as the particle position
at t = 0.687 s during the sedimentation are demonstrated
in Fig. 5. As can be seen that the flow field are highly sym-
metrical and no rotation happens to particle at this
moment. The pressure distribution and the normal gradi-
ent of pressure at the particle surfaces at t = 0.687 s during
the sedimentation are shown in Fig. 6. Under the effect of
multi-direct forcing at the immersed boundary of the mov-
ing particle, there is a sharp variation of normal gradient of
pressure at the particle surface (Fig. 6b) which indicates the
good satisfaction of the no-slip condition there.
Fig. 6. Pressure distribution and the normal gradient of pressure at the partic
pressure).
Fig. 7 shows the average value of lP2-norm for different
times of multi-directing forcing (NF = 1, 4, 10 and 20) for
single particle sedimentation under the conditions of
qP = 1.5 g/cm3, l = 0.01 g/(cm s), mesh size h ¼ 1

256
cm

and time step Dt = 3.125 · 10�6 s. Once again, NF = 1 rep-
resents the original direct forcing scheme proposed by Fad-
lun et al. (2000) is applied at the immersed boundary of the
particle, the average value of lP2-norm is 1.685 · 10�2. And
the average value of lP2-norm is 5.89 · 10�5 when the times
of performing the multi-direct forcing is 20. As the incre-
ment of the times of performing the multi-direct forcing
at the immersed boundary, the average value of lP2-norm
decreases in a near ‘‘�2’’ slope manner in the log–log plot.
A better no-slip boundary condition at the immersed
le surfaces at t = 0.687 s ((a) Pressure distribution; (b) normal gradient of
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Fig. 7. The average value of lP2-norm for different times of multi-directing
forcing (NF = 1, 4, 10 and 20) for qP = 1.5 g/cm3, l = 0.01 g/(cm s),
h ¼ 1

256
cm and Dt = 3.125 · 10�6 s.
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boundary is reached as increasing the times of performing
the multi-direct forcing scheme.

The maximum Reynolds numbers corresponding to the
1, 4, 10 and 20 times of performing the multi-direct forcing
scheme for this case are 484.75, 500.61, 502.95 and 503.38,
respectively. The 1-norm of the maximum Reynolds num-
ber is shown in Fig. 8 when NF increases from 1 to 20 with
taking the maximum Reynolds number at NF = 20 as a
base. The 1-norm of the maximum Reynolds number
decreases in a ‘‘�2’’ slope manner in the log–log plot. As
increasing the times of performing the multi-direct forcing
NF
2 4 6 8 10 12

10-1

100

101

102

1-norm
Slope-2

Fig. 8. Correlation between 1-norm of the maximum Reynolds number
and the times of performing the multi-direct forcing for qP = 1.5 g/cm3,
l = 0.01 g/(cm s), h ¼ 1

256
cm and Dt = 3.125 · 10�5 s with taking the

maximum Reynolds number at NF = 20 as a base.
at the immersed boundary of particle, the no-slip boundary
condition of the particle is satisfied better, and a conver-
gent result of the maximum Reynolds number for moving
particle is obtained.

Fig. 9 shows time history of lP2-norm for single particle
sedimentation under the conditions of qP = 1.5 g/cm3,
l = 0.01 g/(cm s), NF = 20, mesh size h ¼ 1

256
cm and time

step Dt = 3.125 · 10�5 s corresponding to the maximum
CFL number 0.107. Again, the lP2-norm reduces to 5.89 ·
10�5 soon and maintains this value during the whole simu-
lation. And the average value of lP2-norm for three different
mesh sizes conditions corresponding to h ¼ 1

72
cm, 1

144
cm

and 1
256

cm (qP = 1.5 g/cm3, l = 0.01 g/(cm s), Dt =
3.125 · 10�5 s, NF = 20) are shown in Fig. 10. The average
values of lP2-norm for h ¼ 1

72
cm and 1

144
cm are 2.436 ·

10�4 and 1.433 · 10�4, respectively. And the average value
of lP2-norm varies in a ‘‘2’’ slope in the log–log plot as
changing the resolution of mesh grid. A second order
Fig. 9. Time history of lP2-norm for qP = 1.5 g/cm3, l = 0.01 g/(cm s),
h ¼ 1

256
cm and Dt = 3.125 · 10�5 s.

Fig. 10. The average value of lP2-norm for three different mesh sizes
conditions corresponding to h ¼ 1

72
cm, 1

144
cm and 1

256
cm (qP = 1.5 g/cm3,

l = 0.01 g/(cm s), Dt = 3.125 · 10�5 s).



Table 3
Comparisons of the maximum Reynolds number during the particle sedimentation for qP = 1.5 g/cm3, l = 0.01 g/(cm s), and Dt = 3.125 · 10�5 s

qp = 1.5 g/cm3, l = 0.01 g/(cm s), Dt = 3.125 · 10�5 s

Present Glowinski et al. (2001) Wan and Turek (2007) Uhlmann (2005)

h (cm) 1
72

1
144

1
256

1
192

1
256

1
384

1
48

1
96

1
256

ReMax 502.37 503.26 503.38 438.6 450.7 466 442.19 465.52 495
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Fig. 11. Time history of the horizontal position (a) and the vertical
position of the particle center (b) during the sedimentation for qP = 1.5 g/
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accuracy for spacial resolution is obtained in present
numerical simulation. The comparisons of the maximum
Reynolds number during the particle settling in the fluid
with previous numerical results under the same conditions
are depicted in Table 3. In ours simulations, the maximum
Reynolds number are 502.37, 503.27 and 503.38 for
h ¼ 1

72
cm, 1

144
cm and 1

256
cm, respectively. The results are

rough agreement with those of previous numerical simula-
tions conducted by Glowinski et al. (2001) and Wan and
Turek (2007), and are close to the results of numerical sim-
ulations done by Uhlmann (2004). Because the initial posi-
tion of the particle is symmetric and the spatial discrete
scheme keeps the symmetry, the perturbations grow very
slow and the lateral offset of particle position is slightly,
as shown in Fig. 11a. The evolution of vertical position
of the particle center is shown in Fig. 11b. When the parti-
cle falls on the bottom, a colliding force is added on the
particle and it rebounds back. It falls down and rebounds
back alternately and finally the particle stays on the bottom
of the rectangular domain as shown in Fig. 12. This is dif-
ferent from the simulation result conducted by Glowinski
et al. (2001), but is more close to real physical observation.
When the particle rebounds back, a pair of vortex is pro-
duced behind the bottom side of the particle (Fig. 12b).
This pair of vortex encounters and combines the vortex
at the top side of the particle (Fig. 12c). As this two pairs
of vortex combination, these vortexes move to the side
walls (Fig. 12d–e). When the particle re-hitting and
rebounding to the lower wall, the same kind of vortex com-
bination and expansion process is happened again but the
intensity of vortex is much smaller (Fig. 12f).

Fig. 13 shows the velocity vector and vorticity contour
as well as the particle position for qP = 1.5 g/cm3, l =
0.01 g/(cm s), NF = 20 and h ¼ 1

256
cm at t = 0.338 s. Due

to the limited computational domain and symmetric com-
putational algorithm, the pair of vortex behind the particle
does not shed when the particle gets close to the bottom of
the computational area. To observe the unstable dynamics
behavior of vortex structures and particle behind the set-
tling particle, we enlarge the computational domain to
X = (0.2 cm) · (0.15 cm) to get a non-dimensional domain
of (0.8) · (0.60) when taking the diameter of particle as the
characteristic length. The initial position of particle is
located at (1 cm,14 cm) (the non-dimensional position is
(4, 56)). The diameter and density of the particle are
0.25 cm and 1.5 g/cm3, respectively. The viscous of flow
is l = 0.01 g/(cm s). The mesh size is 1

36
of the particle diam-

eter ðh ¼ 1
144

cmÞ. The temporal increment is Dt = 3.125 ·
10�5 s. The times of performing the multi-direct forcing is
NF = 20. The evolution process of flow field and particle
position during single particle sedimentation is shown in
Fig. 14. First, a pair of vortex is formed behind the particle
and is lengthened as particle settling. Then, the pair of vor-
tex is dislocated and sheds alternately due to the Helmholtz
instability. As the vortex forms and sheds, the horizontal



Fig. 12. Flow structure when particle reaches the lower wall for qP = 1.5 g/cm3, l = 0.01 g/(cm s), h ¼ 1
256

cm and Dt = 3.125 · 10�5 s.
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position, the velocity and the angular velocity of the parti-
cle vary semi-periodically, as shown in Fig. 15. When the
particle falls on the bottom, the vertical velocity and posi-
tion get reverse due to a colliding force adding on the par-
ticle as shown in Fig. 15b and d. When the particle collide
the lower wall in this case, the rotation of particle and the
dislocated vortex let the particle move to a side of the wall
with stronger rotating as shown in Fig. 16b. Large scale
vortexes are broken up by the movement of particle
(Fig. 16b and c), and the flow structures are totally different
from those in Fig. 12. After a few times of hitting and
rebounding, the particle stays on the bottom of the compu-
tational domain.

3.2. Drafting, kissing and tumbling of two settling particles

The drafting–kissing–tumbling phenomenon has been
studied extensively. The leading particle creates a wake of
low pressure, and the trailing particle is caught in its wake
which reduces the drag in the trailing one and falls faster
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Fig. 14. Evolution process of flow field and particle position during the particle sedimentation for qP = 1.5 g/cm3, l = 0.01 g/(cm s) and h ¼ 1
144

cm.
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than the leading one. The increased speed of the trailing
particle impels a kissing contact with the leading one. The
two particles form a long body with the line of center along
the stream. This is an unstable equilibrium state. If there is a
small perturbation, the equilibrium state is broken down
and the particles tumble until another equilibrium state is
reached. Here, we use the immersed boundary method with
multi-direct forcing to solve this problem.
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cm.
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3.2.1. Results by immersed boundary method with multi-

direct forcing

The computational parameters are summarized as
follows:
The computational domain is X = (0.2 cm) · (0.2 cm).
The diameter of the particle is DP = 0.25 cm.
The density of the particle is qP = 1.5 g/cm3.
The center of the particle is located at (1 �
0.001 cm, 4.5 cm) and (1 + 0.001 cm, 5 cm) at time t = 0
The fluid and the particle are initially at rest.
The fluid density is qf = 1.00 g/cm3.
The fluid viscous is l = 0.01 g/(cm s).
The collision parameter is eP ¼ e0P ¼ 1:0� 10�7,
eW = 0.5eP, and the force range n = 2h, where h is the
mesh size.



Fig. 16. Flow structure when particle reaches the lower wall for qP = 1.5 g/cm3, l = 0.01 g/(cm s) and h ¼ 1
144

cm.
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The mesh size is 1
64

of the particulate diameter
ðh ¼ 1

256
cmÞ. The temporal increment is Dt = 6.25 · 10�5 s.

The multi-direct forcing is performed for NF = 20 times
and 202 Lagrangian points are used at the immersed
boundary.

The initial horizontal positions of the two particles are
set non-symmetric to accelerate the growth of perturba-
tions. Otherwise, only drafting and kissing can be observed
and the tumbling could not happen. This is because the
symmetric computational algorithm lead the perturbations
grow slowly and the small perturbation cannot break down
the equilibrium state when the two particles collide as dis-
cussed in Uhlmann (2005). The kissing and tumbling stages
are sensitive to the choice of initial horizontal positions of
the two particles.

Fig. 17 shows the time histories of horizontal positions
and vertical positions of the two particles for qP = 1.5 g/
cm3 and l = 0.01 g/(cm s). The variation trends of horizon-
tal positions for the two particles are the same, but the ver-
tical positions of two particles cross each other, which
suggest that the drafting, kissing and tumbling happen
for the two settling particles. The time histories of the hor-
izontal velocities and vertical velocities of the two particles
are depicted in Fig. 18. The crossing of the particle veloci-
ties also indicates the happening of the drafting, kissing
and tumbling phenomenon. Fig. 19 shows the histories of
the angular velocities of the two particles under the same
conditions as above. As can be seen that the magnitude
of the angular velocities for the two particles are close to
each other, but the rotating directions are opposite.
Fig. 20 shows the positions of particles and the vorticity
contour in the flow of two particle sedimentation at differ-
ent time for qP = 1.5 g/cm3, l = 0.01 g/(cm s) and h ¼
1

256
cm. Clearly, the drafting, kissing and tumbling (DKT)

phenomenon is successfully reproduced. The trailing parti-
cle is caught by the low-pressure wake created by the lead-
ing particle, then the drag acted on it is reduced and it falls
faster than the leading one. The increased speed of the trail-
ing particle impels a kissing contact with the leading one. If
there is a small perturbation, this equilibrium state is bro-
ken down and the particles tumble happens. The opposite
rotating directions are also clearly indicated by the arrow
marked on the particles. These results are consistent with
many previous experimental and numerical results (Hu,
1996; Hu et al., 2001; Glowinski et al., 1999; Glowinski
et al., 2001; Patankar et al., 2000; Sharma and Patankar,
2005; Perrin and Hu, 2006). At the colliding moment of
the two particles, a jet flow is observed in between the



Fig. 17. Time history of the horizontal positions (a) and vertical positions
(b) of the center of the particles for qP = 1.5 g/cm3, l = 0.01 g/(cm s) and
h ¼ 1

256
cm. leading: (—) solid line, trailing: (- - -) dashed line.

Fig. 18. Time histories of the horizontal velocities (a) and vertical
velocities (b) of the two particles for qP = 1.5 g/cm3, l = 0.01 g/(cm s) and
h ¼ 1

256
cm. leading: (—) solid line, trailing: (- - -) dashed line.

Fig. 19. Time histories of the angular velocities of the particles for
qP = 1.5 g/cm3, l = 0.01 g/(cm s) and h ¼ 1

256
cm. leading: (—) solid line,

trailing: (- - -) dashed line.
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two particles in the transverse direction to the hitting as
shown in Fig. 21.

3.2.2. Quantitatively comparison with the results of Feng and

Michaelides (2004)
In order to make comparison quantitatively, we com-

pare the results obtained by present immersed boundary
method with multi-direct forcing scheme with the results
from Feng and Michaelides (2004) who applied the
immersed boundary-lattice Boltzmann method to solve
fluid–particles interaction problems including the DKT
case. Here, all the computational parameters are the same
as those in Feng and Michaelides (2004) except the
collision parameters due to different collision strategy.
And these computational parameters are presented as
follow:

The computational domain is X = (0.2 cm) · (0.8 cm).
The diameter of the particle is DP = 0.2 cm.
The density of the particle is qP = 1.01 g/cm3.
The center of the particle is located at (1 cm, 6.8 cm) and
(1 � 0.001 cm, 7.2 cm) at time t = 0.
The fluid and the particle are initially at rest.
The fluid density is qf = 1.00 g/cm3.
The fluid viscous is l = 0.001 g/(cm s).



Fig. 20. Positions of particles and vorticity contour for DKT at different times for qP = 1.5 g/cm3, l = 0.01 g/(cm s) and h ¼ 1
256

cm.
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The collision parameter is eP ¼ e0P ¼ 1:0� 10�7, eW =
0.5eP, and the force range n = 2h, where h is the mesh
size.

The mesh size is 1
30

of the particulate diameter
ðh ¼ 1

150
cmÞ. The temporal increment is Dt = 5.0 · 10�4 s.

The multi-direct forcing is performed for NF = 20 times
and 96 Lagrangian points are used at the immersed
boundary.

Fig. 22 shows the time histories of vertical velocities of
the two particles and the results by Feng and Michaelides
(2004). The drafting, and kissing part of the process agree
with the results by Feng and Michaelides (2004) very well,
and the tumbling part especially for the separation of the
two particles is different from that of Feng and Michaelides
(2004) for applying different collision strategy between par-
ticles in the simulation. Therefore, the results of DKT pro-
cess with immersed boundary method and multi-direct
forcing scheme agree very well with the results obtained
by immersed boundary-lattice Boltzmann method (Feng
and Michaelides, 2004) quantitatively.

3.3. Sedimentation of hundreds of particles

Sedimentation of one hundred and five particles in a
close domain is also simulated to check the availability of



Fig. 21. Horizontal velocity distribution for DTK at the moment of two particle kissing ðqP ¼ 1:5 g=cm3;l ¼ 0:01 g=ðcm sÞ and h ¼ 1
256

cmÞ. A jet flow is
generated in between particles in the transverse direction to the hitting.
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applying the multi-direct forcing technique to study many-
body motion. The computational parameters are summa-
rized as follows:

The diameter of the particle is DP = 0.25 cm.
The density of the particle is qP = 1.5 g/cm3.
The fluid and the particle are initially at rest.
The fluid density is qf = 1.00 g/cm3.
The fluid viscous is l = 0.01 g/(cm s).
The collision parameter is eP ¼ e0P ¼ 1:0� 10�7,
eW = 0.5eP, and the force range n = 2h, where h is the
mesh size.

The mesh size is 1
18

of the particle diameter, i. e.
h ¼ 1

72
cm. The temporal increment is Dt = 6.25 · 10�5 s.

The multi-direct forcing is performed for NF = 20 times
and 57 Lagrangian points are used at the immersed
boundary.

Fig. 23 demonstrates the temporal evolution of the par-
ticle positions and flow structures in the close domain. The
particles are initially arranged in the top region of the
computational domain. It is found that the dense particles
fall down under the influence of gravity and two vortices
forms near the two top corners at the first, as shown in
Fig. 23b and c. The particles near two-side walls fall down
quickly but the particles in the middle of the domain are
held by the fluid, as shown in Fig. 23d and e. During the
sedimentation of particles, a bubble of fluid is formed with
particles around. When the particles settle down on the
bottom of the computational domain, the particles gather
together in the middle region of the closed domain from
two sides of the bubble, as shown in Fig. 23f and g. At
the end, all the particles settle down and stay on the bot-
tom of the closed domain. These complex dynamics char-
acteristics are also successfully captured in the present
study, which confirms the reliability of applying the pro-
posed multi-direct forcing to flows laden with moving
particles.



Fig. 23. Sedimentation process of 105 particles in a close domain.
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4. Summary and conclusion

The multi-direct forcing scheme, proposed for calcula-
tion of the hydrodynamic interactions between rigid
boundary and fluid, is applied to simulate flows laden with
moving particles. Compared with the original direct forc-
ing scheme proposed by Fadlun et al. (2000), the multi-
direct forcing scheme can obtain a better no-slip boundary
condition at the immersed boundary. That the sedimenta-
tion of a single particle in a channel under different condi-
tions and the sedimentation of two particles in a channel
as well as the sedimentation of 105 particles in a close
domain is numerically simulated using the multi-direct
forcing technique combined with immersed boundary
method. Some microcosmic phenomena, such as the hit-
ting and rebounding of the single particle sedimentation,
the drafting–kissing–tumbling of two settling particles
and sedimentation of many particles are successfully cap-
tured. The tracked lP2-norm and the quantitative agree-
ment of the maximum Reynolds number during the
particle sedimentation and the DKT phenomenon with
other studies also prove that the present combined multi-
direct forcing and immersed boundary method can be used
to effectively simulate particle-laden flows with full-scale
solutions.
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